IAT 884 Alternate Output: Motors, Movement, and Control Voltage

Types

Standard DC Motors

Speed of rotation is determined by supplied voltage

Servo

Alignment is set by a microcontroller from 0 – 180 degrees*

Stepper Motors

Precision Aligned using a microcontroller

Solenoids

Motors that have a forward and backward (linear) motion

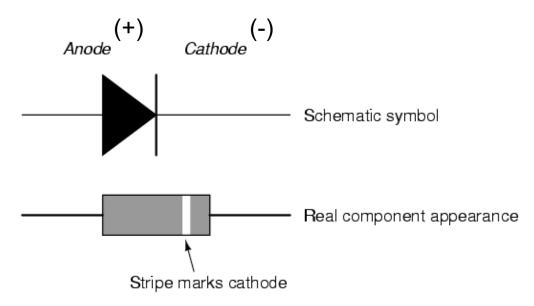
Types

IAT884: Tangible Computing

MotorsStandard DC Motors

Operation

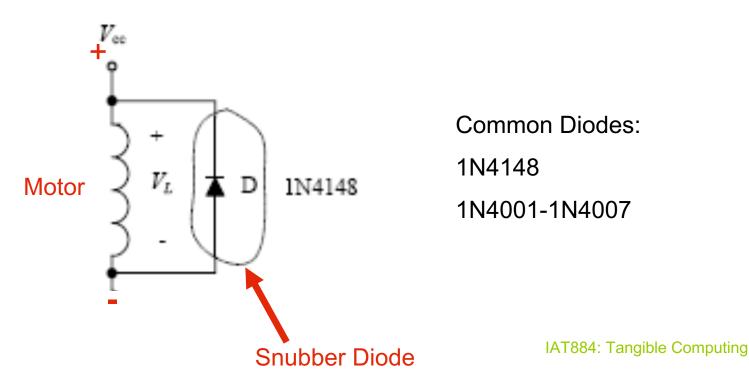
Speed of rotation is determined by supplied voltage <u>Motors are all rated for a specific voltage.</u> <u>Do not exceed this voltage or you will burn out your motor.</u>


Motor Concerns:

Motors produce a magnetic field that can generate back voltage in a circuit which can damage a microcontroller.

A motor may require a lot of voltage. The Arduino board can only output 5 volts.

Motors Concerns Preventing Back Voltage


When a motor's supply voltage is removed, it can **induce** a current ("back EMF" for the keeners) the wrong way through your circuit, causing damage to sensitive components. To prevent this you put a Snubber Diode (aka flyback, clamp, etc.) in your circuit.

Motor Concerns

Preventing Reverse (kick) Voltage

A Snubber Diode is a diode placed <u>inversely parallel</u> to an inductive load. This provides an alternate path for the current and will protect your valuable microcontroller from surges.

Motor Concerns

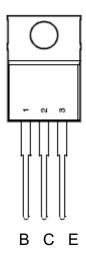
High Current/Voltage Loads

Sometimes a motor, light or other inductive load requires more voltage or current than a microcontroller can provide.

This requires 2 discrete power sources in a circuit.

The Microcontroller output voltage (0V-5V) can be used to proportionally change the voltage supplied to the motor (0V – 12V) by a separate power supply.

To do this we use a transistor (or relay).


Transistors

Transistors are used to switch or amplify voltage

A basic transistor has three connections, the base, the collector, and the emitter.

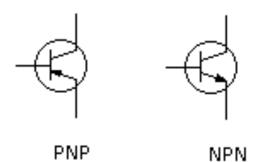
There are many different kinds of transistors. Some look different, some act different. The two types of the most common (bipolar) transistors are PNP and NPN.

Transistors you might find in your kit:

- TIP120
- TIP122

IAT884: Tangible Computing

Transistors

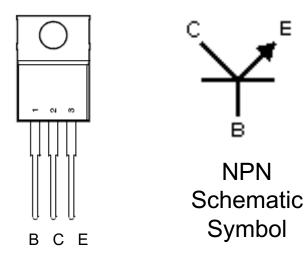

Transistors are used to switch or amplify voltage

NPN - Switch the negative side of a circuit by bringing the base HIGH

PNP - Switch the **positive** side of a circuit by bringing the base **LOW**

NPN = "Never Points iN"

PNP = "Points iN Permanently"

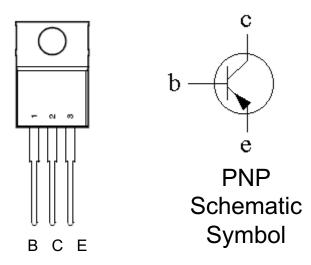


Transistors

Transistors are used to switch or amplify voltage

For our circuits we will almost always use NPN transistors.

The Base is connected to a control voltage (e.g. Microcontroller output)
The Collector is attached to the negative terminal of the motor (or light)
The Emitter is connected to the common ground


IAT884: Tangible Computing

Transistors

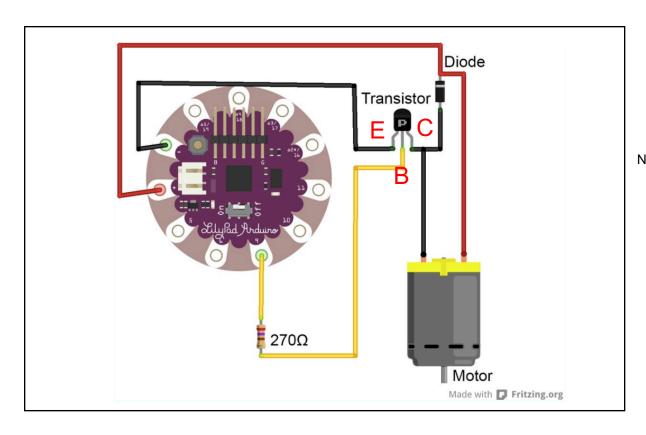
Transistors are used to switch or amplify voltage

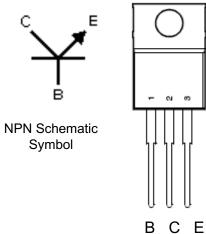
The other type of transistor is the PNP transistor.

The Base is connected to a control voltage (e.g. Microcontroller output)
The Collector is attached to the positive terminal of the motor (or light)
The Emitter is connected to the power source

Transistors

Transistors are used to switch or amplify voltage

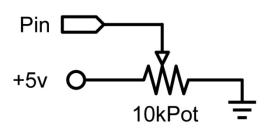

IMPORTANT NOTE:


Transistors are fairly sensitive electronic components. The base can handle a limited current - typically 10-20 mA is safe and sufficient. BUT on certain types of transistors (e.g. MOSFET) it can be less than 5mA!!

Remember to use a current limiting resistor, just like with LEDs.

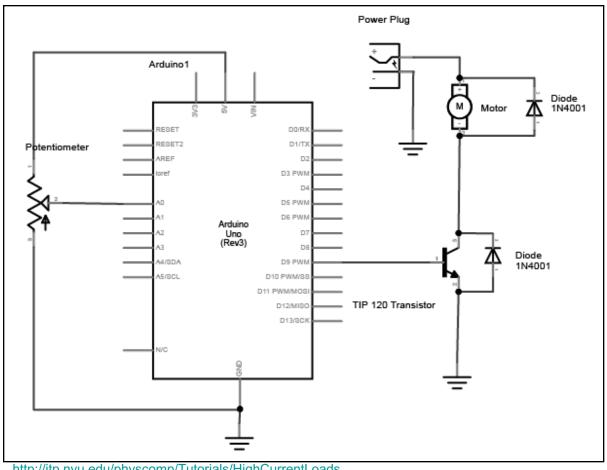
Transistors

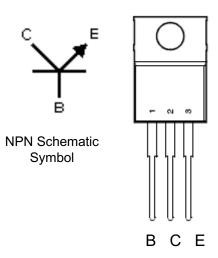
Motor Control Circuit



Potentiometer

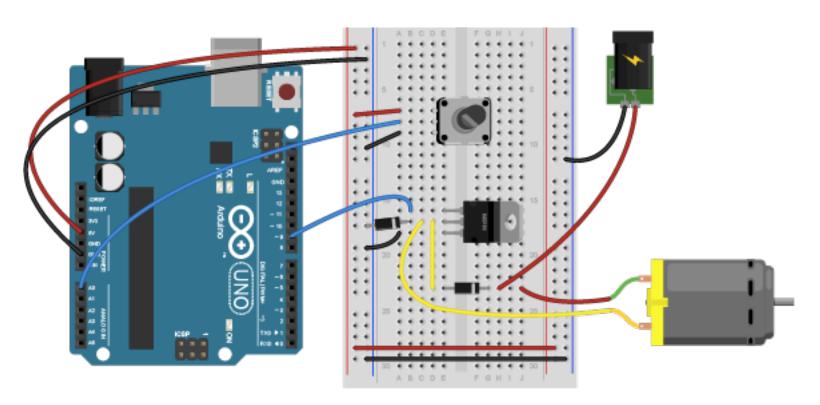
Variable Resistor


A potentiometer is a rotary voltage divider. It functions like a variable resistor changing the output voltage when the knob is turned.



Transistors

Example: Use a potentiometer to control motor speed



http://itp.nyu.edu/physcomp/Tutorials/HighCurrentLoads

IAT884: Tangible Computing

Transistors

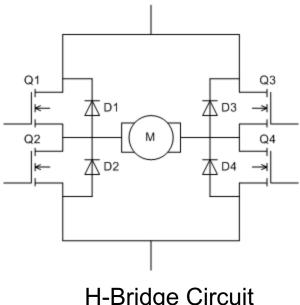
Arduino Circuit

Transistors

Example: Blink sketch to test motor

```
const int transistorPin = 9; // connected to the base of the transistor
void setup() {
 // set the transistor pin as output:
 pinMode(transistorPin, OUTPUT);
void loop() {
  digitalWrite(transistorPin, HIGH);
 delay(1000);
 digitalWrite(transistorPin, LOW);
 delay(1000);
```

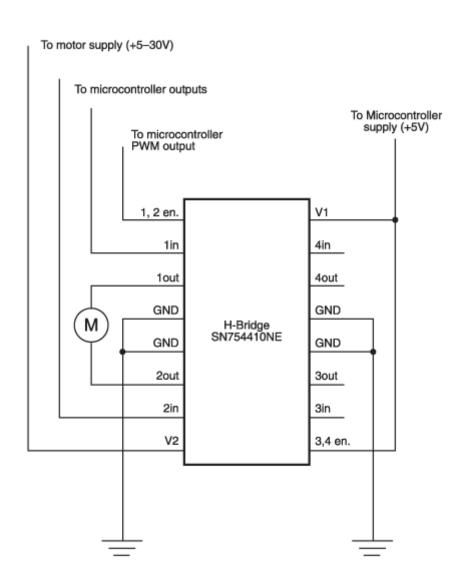
Transistors


Example: Use a potentiometer to control motor speed

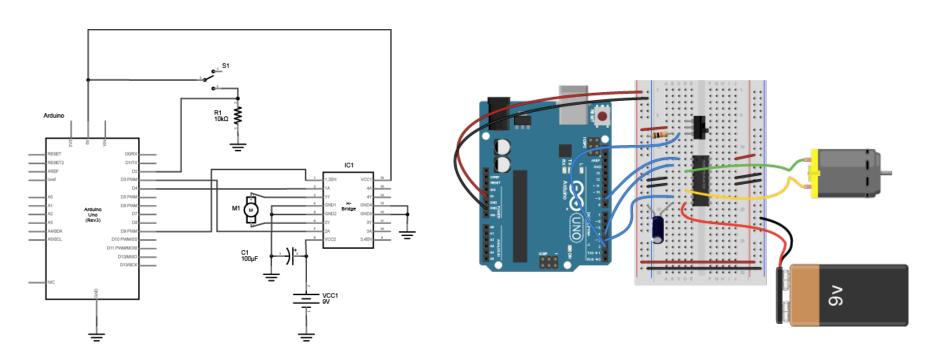
```
const int transistorPin = 9; // connected to the base of the transistor
void setup() {
 // set the transistor pin as output:
 pinMode(transistorPin, OUTPUT);
void loop() {
 // read the potentiometer:
 int sensorValue = analogRead(A0);
 // map the sensor value to a range from 0 - 255:
 int outputValue = map(sensorValue, 0, 1023, 0, 255);
 // use that to control the transistor:
 analogWrite(transistorPin, outputValue);
```

H-Bridge Circuits

Bidirectional Motor Control


Transistors are great if we only need to move a motor in one direction. H-Bridge Circuits allow us to change a motor's direction on demand. An H-Bridge is just 4 transistors wired together.

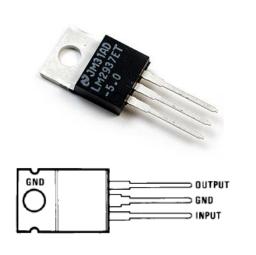
H-Bridge Circuit

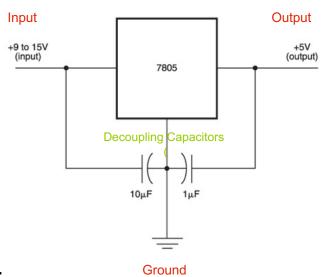

Motors H-Bridge Circuits Wiring Scheme

H-Bridge Circuits

Connecting to an Arduino

Source: http://itp.nyu.edu/physcomp/Labs/DCMotorControl


IAT884: Tangible Computing


Voltage Regulators

Voltage regulators convert a higher voltage to a lower voltage.

They come in a variety of types including 3.3V, 5V and 9V.

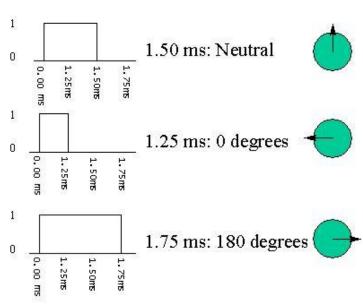
They can get HOT under normal operation, but this might also indicate that you have wired something incorrectly!

Regulators you might find in your kit:

- 7805CT
- LM1084

IAT884: Tangible Computing

Servo Motors


Servo Motors Use <u>Pulse coded modulation</u> to change a motor's position from 0 -180. When a motor receives a specific pulse it will move to the corresponding angle and maintain that position as long as it continues to receive the same signal. The signal must be resent at least every 20 ms.

Pulse Length

1.5 ms 90 Degrees (Neutral)

> 1.5 = closer to 180 degrees

< 1.5 = closer to 0 degrees.

MotorsServo Motors **Arduino**

The Arduino programming language has two methods for controlling servos.

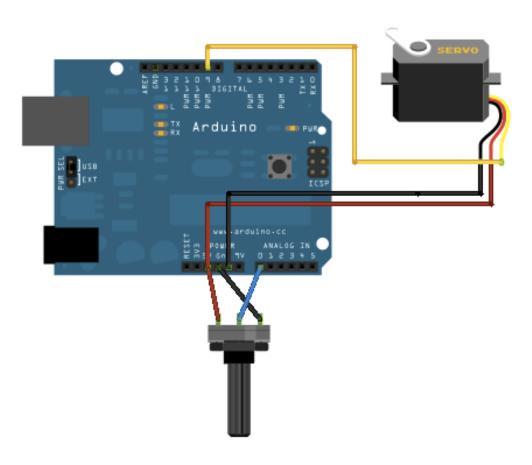
- 1. Manually set the pulse lengths, min pulse, max pulse, etc.
- 2. Use the Software Servo library <servo.h> by Arduino Playground.

Servo Motors

Servo.h - Main Functions

```
attach(int)
    Turn a pin into a servo controller. Calls pinMode.
detach()
    Release a pin from servo control.
write(int)
    Set the angle of the servo in degrees, 0 to 180.
read()
    return that value set with the last write().
attached()
    return 1 if the servo is currently attached.
```

Servo Motors


#include <Servo.h>

Example: Control the position of a motor using a potentiometer

```
Servo myservo; // create servo object to control a servo
int potpin=0; // analog pin used to connect the potentiometer
int val; //variable to read the value from the analog pin
void setup(){
myservo.attach(9); //attaches the servo on pin 9 to the servo object Serial.begin(9600);
void loop(){
val = analogRead(potpin); // reads the value of the potentiometer
val = map(val, 0, 1023, 0, 180); //scales it to use with the servo (value between 0 and 180)
myservo.write(val); //sets the servo position according to the scaled value
Serial.println(val);
delay(15); //waits for the servo to get there
```

Servo Motors

Example: Control the position of a motor using a potentiometer

Acitivites

Design a circuit that uses a potentiometer to control a DC Motor. You should use a battery as a separate power source for the motor and an NPN transistor to switch the current. You will need to use a voltage regulator to bring the voltage supplied to the motor down to 5v.

- Step 1: Attach Potentiometer (and test functionality using serial window)
- Step 2: Build Voltage Regulator circuit to power motor (test with multi-meter)
- Step 3: Unplug from USB, finish circuit by adding transistor and motor elements.
- Step 4: Attach AC adapter to Arduino Board to power

Design a circuit to control a servo motor. Use the potentiometer from your previous circuit to control the position of the servo. Use the AC adapter to power the Arduino board to ensure that you have enough power for the system and to make it more portable. *You can use the software servo library from Arduino Playground.*

- Step 1: Make sure potentiometer is working and check output range.
- Step 2: Convert incoming value from the potentiometer to a value between 0 180 to correspond to the angle of the servo
- Step 3: Unplug from USB, and attach servo motor
- Step 4: Attach AC adapter to Arduino Board to power