
IAT884: Tangible Computing

IAT 884 Workshop
Micro-Controllers:

Input

The Arduino Diecimila/Duemilanove

Input Pins

IAT884: Tangible Computing

Digital I/O Pins

Analog In Pins

Digital In
Signals are interpreted as high or low.
High = 5v
(Actually anything more than 3v is interpreted as HIGH.)

Low = 0v

Process:
1. Read input from one of the digital pins (0-13).

2. Detect the type of signal using an IF statement.

IAT884: Tangible Computing

Digital I/O
Pins

Digital In

IAT884: Tangible Computing

EXAMPLE:
int inPin = 7; // pushbutton connected to digital pin 7
int val = 0; // variable to store the read value
void setup()
{

pinMode(inPin, INPUT); // sets the digital pin 7 as input
}
void loop()
{

val = digitalRead(inPin); // read the input pin
if(val==HIGH) {Serial.println “HIGH”); //check to see if the signal is high

}

pinMode(2, INPUT); //Set pin 2 as input

val = digitalRead(2); // read the input pin

Analog In
The Arduino will convert any analog input signal between 0-5v into a
number between 0-1023. (10 Bit ADC)

* Remember that Analog Out send signals using 0-255

There are 6 Analog pins and they are separate from the digital pins.

IAT884: Tangible Computing

Analog
In Pins

Analog In

IAT884: Tangible Computing

val = analogRead(analogPin); // read the input pin

int analogPin = 3;
int val = 0; // variable to store the value read
void setup()
{

Serial.begin(9600); // setup serial
}
void loop()
{

val = analogRead(analogPin); // read the input pin
Serial.println(val); // debug value

}

Pull-Up Resistor
Pull-up resistors are used to ensure that there is a complete
voltage drop to 0v when a switch is open. (A pull-down resistor
works exactly opposite, pulling the signal up to 5v when the
switch is open. This prevents wandering signals.

Pull-Up Resistor
Problem: In the circuit below, closing the switch will connect
the Arduino input pin with the ground pin resulting in a reading
of 0v. But what about when the switch is open?

A floating input gate with
an indeterminate value.

Because the input pin has no connection to Vcc
(+5 volts) it will never read HIGH. Instead it will
“float” producing unpredictable values.

Pull-Up Resistor
Our first impulse is to connect the input to Vcc (+5v) to solve
the problem. This works fine when the switch is open….

A floating input gate with
an indeterminate value.

Vcc

First impulse solution

Pull-Up Resistor

A floating input gate with
an indeterminate value.

Vcc

First impulse solution –
Creates a short circuit.

BAD IDEA!!!!!

Our first impulse is to connect the input to Vcc (+5v) to solve
the problem. This works fine when the switch is open…. But
creates a short circuit when it is closed. There is now a direct
connection between ground (0v) and Vcc (+5v).

Pull-Up Resistor
By placing a resistor between Vcc (+5) and the switch we
prevent the short circuit but still allow enough voltage through
to let our input pin on the Arduino read HIGH.

A floating input gate with
an indeterminate value.

Vcc

First impulse solution –
Creates a short circuit.

BAD IDEA!!!!!

A Pull up Resistor solves
the problem!

Pull-Down Resistor
This is an example of a Pull-Down Resistor attached to an
Arduino Board.

Grounding Input Sources
Whenever you are sending signals from one circuit to another
(i.e. from a sensor to the Arduino), you must make sure
everything shares a COMMON GROUND.
This means that the negative wires from all components
must be connected.

If you are using a separate power supply that provides 12v
(remember that the Arduino runs on 5v) you still need to
connect the negative wires together. This creates the common
ground.

Decoupling Capacitors
Decoupling capacitors are low strength capacitors placed
between voltage and ground. Decoupling capacitors smooth
signals and can greatly improve readings on sensors.

Decoupling capacitors are generally between 0.1 uF and
22 uF. (Micro Farads)

Input voltage Output voltage

LED

Ground

5v Regulator

Scaling Functions
A common task you will need to perform is the conversion of
an input value into a range that is usable. For example, you
receive an analog input value between 0-1023 and you want to
send out a proportional analog signal to some device (0-255).
Scaling functions help us do this.

OUTPUT VALUE = ((InValue - minInValue) * outRange / InRange) + minOut

• InValue is the current analog reading
• minIn = lowest possible input value
• maxIn = highest possible input value
• maxOut = highest popssible output value
• outRange = maxOut –minOut
• InRange = maxIn-minIn

Scaling Functions

The Arduino Library has a built in scaling function called map()

map(value, fromLow, fromHigh, toLow, toHigh)

Example:
mapped_value = map(initial_value, 0, 50, 0, 1024);

Will convert a number between 0 – 50 to a number between 0 -1024

if initial_value = 0 then mapped_value = 0

if initial_value = 50 then mapped_value = 1024

if initial_value = 25 then mapped_value = 512

Edge Detection
Edge Detection is a method that allows you to use a
pushbutton as a switch.

It uses input signal change (e.g. from LOW to HIGH) as the
trigger for some action.

After receiving a signal change the system compares the
current signal with the previous signal. If the signals are
different then we know the button state has changed.

Using Edge Detection you can count the number of times a
button has been pressed.

=

Edge Detection
int switchPin = 2;
int switchCounter = 0;
int switchState = 0;
int lastSwitchState = LOW;

void setup() {
pinMode(switchPin, INPUT);

}

void loop() {
// read the switch
switchState = digitalRead(switchPin);
// compare the switch to its previous state
if (switchState != lastSwitchState) {

// if the state has changed, increment the counter
if (switchState == HIGH) {

switchCounter++;
}

// save the current state as the last state,
//for next time through the loop
lastSwitchState = switchState;
}

}

Debouncing
Debouncing is similar to Edge Detection. Debouncing an input
removes faulty readings due to the mechanical properties of
the button.

When a button is pushed, even though it is in one state, there
can be faulty readings where the button’s spring “bounces”
quickly back and forth between on and off.

To prevent extra state changes from being counted we make
sure that the button has been in a state a specific amount of
time before registering the button press.

=

Debouncing int inPin = 7; // the number of the input pin
int outPin = 13; // the number of the output pin
int state = HIGH; // the current state of the output pin
int reading; // the current reading from the input pin
int previous = LOW; // the previous reading from the input pinvoid setup()

// the follow variables are long's because the time, measured in miliseconds,
// will quickly become a bigger number than can be stored in an int.
long time = 0; // the last time the output pin was toggled
long debounce = 200; // the debounce time, increase if the output flickers

void setup() {
pinMode(inPin, INPUT);
pinMode(outPin, OUTPUT);

}

void loop()
{

reading = digitalRead(inPin);

// if we just pressed the button (i.e. the input went from LOW to HIGH),
// and we've waited long enough since the last press to ignore any noise...
if (reading == HIGH && previous == LOW && millis() - time > debounce) {
// ... invert the output
if (state == HIGH)

state = LOW;
else

state = HIGH;
// ... and remember when the last button press was
time = millis();

}

digitalWrite(outPin, state);
previous = reading;

}

Debouncing
int inPin = 7; // the number of the input pin
int outPin = 13; // the number of the output pin
int state = HIGH; // the current state of the output pin
int reading; // the current reading from the input pin
int previous = LOW; // the previous reading from the input pinvoid setup()

// the follow variables are long's because the time, measured in miliseconds,
// will quickly become a bigger number than can be stored in an int.
long time = 0; // the last time the output pin was toggled
long debounce = 200; // the debounce time, increase if the output flickers

Debouncing
void loop()
{

reading = digitalRead(inPin);

// if we just pressed the button (i.e. the input went from LOW to HIGH),
// and we've waited long enough since the last press to ignore any noise...
if (reading == HIGH && previous == LOW && millis() - time > debounce) {

// ... invert the output
if (state == HIGH)

state = LOW;
else

state = HIGH;
// ... and remember when the last button press was
time = millis();

}

digitalWrite(outPin, state);
previous = reading;

}

Debouncing
There is a library that you can use to make debouncing easier.
However I suggest writing your own code first to better understand
what is going on under the hood.

The Bounce Library can be found here:

http://www.arduino.cc/playground/Code/Bounce

Activities
In Class Exercise:
1. Create a circuit that uses a switch or pushbutton to activate a piezo

buzzer. You should use one of the digital inputs on the Arduino along with
a pull-up resistor. See below for code to generate tones.

2. Create an “instrument” that can be played using an LDR (Light
Dependant Resistor). The frequency of the playback tone should be
controlled by the amount of light hitting the LDR. The LDR must be
connected to an analog input pin on the Arduino and use a pull-up
resistor. The mapping between light/frequency is up to you. You will likely
need to use the serial monitor to see what kind of input you are getting
each sensor.

3. Add at least one decoupling capacitor to your circuit. (10 uF or 22uF)

4. OPTIONAL: Redo Exercise 1 but have each button press play a sound
for a specific length of time. You will need to “debounce” your switch to
accomplish this.

Pull-Up Resistors Revisited
The Arduino baord has built in Pull-Up Resistors on all digital pins.
To activate them you simply declare a pin as an INPUT pin:

pinMode(inPin, INPUT);

but also add the following statement in setup():

digitalWrite(inPin, HIGH) ;

//inPin is the number of the physical pin you are using on the board

And you still read the pin the same way:

val = digitalRead(inPin);

Using this command you no longer have to make a connection with the 5v
pin at all. You just connect one side of your switch to ground, and the other
to the digital input pin you are using.

