IAT 884 – Tangible Computing Week 1 Basic Electronics ### Preparation: Read *Physical Computing*: Introduction, chapter 1, chapter 2 (p. 11-25 only), and chapter 3. You can find it online here: http://proquest.safaribooksonline.com.proxy.lib.sfu.ca/159200346X #### **In Class Exercise** For this workshop you will be building some basic circuits. You will also draw a schematic diagram representing each one. You do not need to solder these circuits, however if you feel confident and wish to try using the soldering gun you are welcome to. #### Material (Provided in your kits) Bread Board 9 Volt Battery 1 x Battery Connector 1 x LED 1 x Switch 1x 1k Ohm Resistor 1x 390 Ohm Resistor 1 x Photo Resistor/ Flex Sensor/ Other Sensor Wire: Solid Core #### Tasks: - 1. Build circuits to accomplish each of the following tasks: - Light an LED - Use a switch to control the state of an LED - Dim an LED by incorporating it into a voltage divider circuit. (See attached worksheet how to build this). * - 2. Draw a schematic diagram representing each circuit ^{*} Definition of Voltage Divider: P. 95 in Physical Computing ## **Basic Circuits** LEDs require a resistor to keep them from burning out immediately. To determine the value of this resistor you use the following formula. The resistor value R is given by: $$\mathbf{R} = (\mathbf{V}_{\mathbf{S}} - \mathbf{V}_{\mathbf{L}}) / \mathbf{I}$$ V_S = supply voltage (9 Volts in this case) $V_L = LED$ voltage ($\sim 2V$ for Red LEDs) I = LED current (~ 20mA). Your circuit must provide more current than your components require. So, if we plug our values into the equation we get: $$R = (9V - 2V) / 0.02A = 350\Omega$$ Anything greater than this value is suitable, the higher the value of the resistor, the dimmer the LED will glow. You could choose a 390Ω resistor, but we will use a $1K\Omega$ resistor. # **Voltage Divider Circuits** Voltage Divider Schematic Voltage Divider Circuit on a breadboard Voltage Divider Circuit with an LED #### STANDARD SCHEMATIC SYMBOLS The symbols below are standard in radio, TV and electronics diagrams. Popular components are represented. An industry-wide attempt is being made to standardize schematic diagrams. All current diagrams will be enough like these to easily identify the components. Note the two methods used to indicate a wire connection and a crossover. Both are in common use, but the curved wire crossover and dotted connection is preferred. The symbol for a ground point may indicate an actual connection to the metal chassis, or a connection to a common lead, usually the B- voltage point. All ground points may usually be assumed to be connected together electrically. | Ψ | ANTENNA
(AERIAL) | | IRON CORE
CHOKE COIL | °°° | SWITCH
(ROTARY OR
SELECTOR) | |-------------|--|---|--|---------------------------|--------------------------------------| | ÷ | GROUND | THE SECTION | R.F.
TRANSFORMER
(AIR CORE) | + | DIODE | | ďĎ | ANTENNA
(LOOP) | 3 | A.F.
TRANSFORMER
(IRON CORE) | | LIGHT NING
ARRESTER | | + | WIRING METHOD 1
CONNECTION | Es, | POWER TRANSFORMER P. 115 VOLT PRIMARY S1. CENTER-TAPPED | ~~ | FUSE | | - | NO CONNECTION | 200000 | SECONDARY FOR
FILAMENTS OF
SHOWEL CIRCUIT
TUBES
02 - SECONDARY FOR | -0- | PILOT LAMP | | + | WIRING METHOD 2
CONNECTION | 3 | RECTIFIER TUBE
FILAMENT
93 - CENTER TAPPED
HIGH- VOLTAGE
SECONDARY | 69 | HEADPHONES | | _ | NO CONNECTION | 卡 | FIXED
CAPACITOR
INICA OF PAPER! | | LOUDSPEAKER,
P. M. DYNAMIC | | ļ | TERMINAL | 井 | FIXED
CAPACITOR
RELECTROLYTICS | M K | LOUDSPEAKER,
ELECTRODYNAMIC | | + r | ONE CELL OR
"A" BATTERY | * | ADJUSTABLE
OR VARIABLE
CAPACITOR | Œ | PHONO PICK-UP | | | MULTI-CELL OR
"B" BATTERY | <i>**</i> -* | ADJUSTABLE
OR VARIABLE
CAPACITORS
(GANGED) | $\langle \varphi \rangle$ | VACUUM TUBE
HEATER OR
FILAMENT | | | RESISTOR | Z | I. F.
TRANSFORMER
(DOUBLE-TUNED) | 4 | VACUUM TUBE
CATHODE | | | POTENTIOMETER
(VOLUME CONTROL) | $\overset{\wedge}{\Rightarrow}\overset{\downarrow}{\ \ }$ | POWER SWITCH
S. P. S. T. | <u> </u> | VACUUM TUBE
GRID | | | TAPPED RESISTOR
OR VOLTAGE
DIVIDER | ~ % | SWITCH
S. P. D. T. | \triangle | VACUUM TUBE
PLATE | | | RHEOSTAT | -01°- | SWITCH
D. P. S. T. | | 3-ELEMENT
VACUUM TUBE | | | AIR CORE
CHOKE COIL | - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | SWITCH
D. P. D. T. | \bigcirc | ALIGNING KEY
OCTAL BASE
TUBE |