## IAT 884 Workshop Basic Electronics

## Basic Concepts

## Voltage = Electrical Potential

The volt is the unit measure of electrical pressure.

## Amps = Current

Current is the measure of the flow of electrons passing through a given point in a circuit in a given amount of time

## Ohms ( $\Omega$ ) = Resistance

Resistance is the measure of a device's opposition to the flow of electrical current.

## Watts = Power

Power is a measure of the amount of work that is being done at a given point in time. To calculate power use the formula:
Watts = Volts * Amps

## A Simple Water Analogy

## Voltage = Water Pressure

Amps = Current Flow

Ohms = Valve


## The Flow of Electricity

Conventional Flow:
Current is viewed as flowing from positive (+) to negative (-) terminals.
This is how engineers talk about electricity.

## Electron Flow:

In actuality, current flows from negative to positive. It is the movement of electrons from high density
 to low density.

## AC vs. DC Current

## Alternating Current:

An electrical current whose magnitude and direction vary cyclically. This is the power we plug things into at home.

## Direct Current:

An electrical current in which the electric charges flow in the same direction.
The kind of current produced by batteries.

## Common Components

Breadboard: Simple way to connect components without using solder.
Wire: Passes current from one part of a circuit to another.
Power Supply: Supplies electrical energy.
Switch: An on-off switch allows current to flow only when it is closed (on).
Resistor (and Variable Resistor): Restricts the flow of current.
Capacitor: Stores electric charge.
Diode (General Purpose): Only allows current to flow in one direction.
LED (Light Emitting Diode): A transducer that converts electrical energy to light.

Transistor: Can be used as a switch or amplifier
Relay: A switch that is controlled by another electrical circuit.
Voltage Regulators: Convert a higher voltage into a lower usable voltage

## Series Circuit

An electrical circuit in which the components are connected end to end, so that the current flows through them all one after the other.


Voltage:
$V_{T}=V_{1}+V_{2}$

Resistance:
$R_{\mathrm{T}}=R_{1}+R_{2}$

Current:
$I_{T}=I_{1}=I_{2}$

## Schematic Symbols



Cell


Switch

Resistor


Diode


Capacitor


Transistor

## Parallel Circuit

An electrical circuit in which the components are connected side by side. The current flowing in the circuit is shared by the components.


Voltage:
$V_{T}=V_{1}=V_{2}$

Resistance: $1 / R_{T}=1 / R_{1}+1 / R_{2}$

Current:

$$
I_{T}=I_{1}+I_{2}
$$

## V=IR

## One amp of current will flow through a resistance of one ohm if one volt of electrical force is applied to the circuit.

V=Volts
I=Amps R=Ohms


## Applying Ohm's Law

12 Volt Power Supply $24 \Omega$ Resistor
$\mathrm{V}=12$ Volts
R = 24 Ohms
Then...


$$
\begin{aligned}
& I=V / R \\
& I=12 I 24 \\
& I=1 / 2 \text { Amp }
\end{aligned}
$$

## Applying Ohm's Law <br> Choosing an LED

## $\mathrm{R}=\mathrm{V} / \mathrm{I}$

## Calculate Voltage:

VS $=$ supply voltage $=9$ Volts
VL $=$ LED voltage $=\sim 2 \mathrm{~V}$ for Red LEDs
$\mathrm{V}=(\mathrm{VS}-\mathrm{VL})=(9 \mathrm{~V}-2 \mathrm{~V})=7$ Volts
Calculate Amperage:
$\mathrm{I}=\mathrm{LED}$ current $=\sim 20 \mathrm{~mA}=.02 \mathrm{~A}$


$$
\begin{aligned}
& \mathrm{R}=7 \mathrm{~V} I 0.02 \mathrm{~A} \\
& \mathrm{R}=350 \Omega
\end{aligned}
$$

Any resistor equal or greater than $350 \Omega$ will work, but higher values will dim the LED more.

